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NOMENCLATURE

Specific heat of liquid (J/kg - K)

Error associated with the quasi-steady solution (dimensionless)
Notation for functional relationships
Latent heat of vaporization (J/kg)
Height of the vapor chamber (m)
Pressure (Pa)

Droplet radius (m)

Time (s)

Dummy variable of integration

Droplet mixing cup temperature (K)
Saturation temperature (K)

Droplet velocity (m/s)

Independent variable

Dependent variable

Axial coordinate (m)

Axial coordinate of the liquid front (m)
Liquid thermal diffusivity (m?/s)
Steady void fraction (dimensionless)
Time-step size (s)

Distance traveled by the droplet during At (m)
Liquid density (kg/m?)

Vapor density (kg/m?)

Exponential pariod of a transient (s)
Phenomenological time constant (s)
Droplet lifetime (r, = L/u) (s)
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a = At/r

A = [4324.6P,/(Tuaro — To)****] (pe/Pu.0)
B = T,-2552/Tyt0— T,
Ja = hyo/Co(Tsar — To)

§ = (dYss/dX)/(Yss/X)
T* = T-T,/Taro—To
T,'.. = Tyt — To/Tul.o -7,
t* = at/R?

u* = uR?/al

et = z/L

At* = aAt/R?

0 = 1/t

r* = ar/R?

1, = ar/R?

Subscripts

c Critical value
' Index

o Initial

Qs Quasi-steady
SS Steady state
TR Transient
Superscript,

Time counter



INVESTIGATION OF THE QUASI-STEADY APPROACH
USED IN TRANSIENT TWO-PHASE FLOW ANALYSIS*

by
Kemal O. Pasamehmetoglu and Ralph A. Nelson

Safety Code Development
Nuclear Technology and Engineering Division
Los Alamos National Laboratory
Los Alamos. New Mexico 87545

ABSTRACT

In this paper. implications of the quasi-steady approach to numer-
ical solutions of two-phase flow problems are addressed by the appli-
cation of basic principles. First. a simple criterion to determine the
limitations of the quasi-steady approach is discussed. This criterion
is used to determine the minimum time-step size required during the
quasi-steady solution. Using this same cnncept. a method for making
truly transient problems artificially quasi-steady is developed Finally.
these concepcs are applied to a simple interfacial heat-t;ansfer problem.
The numerical instability that results from the quasi-steady approach
during the explicit solution of this problem is investigated.

I. INTRODUCT'ON

The coupled-equation set that combines the single-phase multidimensional fluid conser-
vation equations for mass. momentum. and energy with the equation for heat diffusion within
a Lounding wall is called the conjugate problem If the necessary initial and boundary con-
ditions are known its solution requires no @ priori knowledge of the wall-to-fluid convective
heat transfer This approach has been usad to obtain both analytical and numerical solutions
to many single-phase transients (see. fur instance. the studies of Sucec !-3) Results from
this approach have been compared with results obtained using a quasi-steady approach and
thase comparisons have produced an understanding of when the simpler quasi-steady approach
produces valid results

The quasi-steady approach assumes a knowledge of the wall-to-fluid heat transfe: based
on the local-instantaneous fluid paramsters The method works as long as the fluid res ponds
more uickly than the wall. For example. the fluid boundary layer responds so quickly that the

* This work was performed under the auspice. of the US Department of Energy



surface tempeiature of a thick, high-conductivity wall does not have time to change. However.
when the wall changes faster than the fluid. transient constitutive relations must be known
to solve either problem accurately. Each transicnt yields unique rate-dependent constitutive
relationships. Therefore. similar relationships for each phenomenon during different types of
transients must be ootained before a truly transient problem can be solved.

The difficulty in solving the transient two-phase flow problem becomes even more pr~
nounced because a third set of field equations for the additional phase must be solved simul-
taneously. Despits the difficulties and limitations of the quasi-steady solution approach to the
conjugate problem. especially for two-phase flow. this approach is the only method available
to simulate transient conditions in large., complex. two-phase systems such as chemical or
nuclear power plants. In the codes developed to address these problems. the quasi-steady
apprcach is used for both wall-to-fluid and interfacial heat transfer as well as the wall-to-
fluid end interfacial-drag packages. Cften. these large numerical codes are used even when
the quasi-steady assumption is invalid. The literature contains many papers in which the
constitutive relationships have been improved to obtain agreement with what is. in fact. tran-
sient d=ta Although valuable insight can bz gained in this process. the improved constitutive
relationships may be misieading and may prcduce inaccurate results when applied to other
non-quasi-steady experiments or truly quasi-steady transients.

Therefore. when using large transient analysis codes such as the Transient Reactor Analy-
sis Code (TRAC).% it is extremely important that the limitations of the quasi-steady approach
are recognized In order to obtain reliable results. the difficultics that are caused by the quasi-
steady approach must be resolved. These difficulties may be classified in two categories.

1. If the time ccnstant of -he transient is smaller than the time constant of the occurring
phenomena. the quasi steady approach yields erroneous 1esults. The error increases
as the transient accelerates. The numerical portion of this problem. which has long
been acknowledged. has led to artificial averaging or limiting techniques. because
transient constitutive relationships either do not exist or are im sossible to incorporate
into the quasi-steady logic of the code numierics. Often. these averaging and limiting
techniques sre ad hoc modeis with littie experimenral or theore.ical support Thus.
recognizing these fast transients and developing a method to make them artificialiy
quasi-steady are still important problems in the area of transient two-phase flow
code development.

2. The second problem is associated with the time-step size used in the numerical
solution of the transient two-phase field equations As a rule of thumb choosing a
time-step size between the time constant of the phenomena and ths time constant
of the transient leads to smooth. vald results However. in integral codes such a
criterion may not always be satisfied because (1) the transient may be so fast that the
transient time constant is smaller than the phenomenological time constant. and/or
() the time constants of diTerent pheriomena that are being analyzed simultareously
in differert parts of the system may differ considerably such that a large enough
time-step size fcr one phenomenon may be too small for another. and/or (1) the
choice of the timer-step size may be dominated by oth«r considerations such as the
matenial Courart imit M. for any resson. a time-step size smaller than the time
wonstant of the phenomena is chosen. such a choice may cause the phenomend



to change too quickly. Especially in integral system analysis codes like TRAC,?
such an unnatural event may be enhanced from one constitutive relation to another.
Cornisequently. the aralysis not only may yield erroneous results but also. in some
cases, may create a numerical instability. This problem also has been recognized.
However, a comprehensive and systematic approach to avoid this problem does not
exist because, by the time the erroneous solution is obtained or an instability emerges
in integral codes. the origin of the initial unnztural event(s) may be difficult to trace.

In this paper, the above difficulties of the quasi-steady approach are addrassed by the
application of basic principles. In Sec. ll. a simple criterion to determine the limitations
of the quasi-steady approach is discussed. Based upon this criterion, the time-step size
requirements in the numerical solutions are discussed in Sec. lll. In the same section. a
systematic procedure for making transient problems artificially quasi-steady also is discussed.
In Sec. IV, a simple interfacial heat-transfer problem, where the quasi-steadv approach leads
to a numerical instability. is investigated. Finally. the summary and conclusions are presented
in Sec. V.

. A SIMPLE CRITERION TO DETERMINE THE LIMITATION OF THE QUASI-
STEADY APPROACH
A generic and systematic discussion of the quasi-steady versus transient heat-transfer
problems is provided by Melson.4> This discussion is based upon the total rate of change of
the dependent variable when the independent variable(s) is (are) under transient. For example,
if we assume a simple steady-state constitutive relationship in the form,

Yss = F(xi) ’ (1)

where 1 is the index denoting the different independent variables. If the independent variable,
X,;. changes with time. then the time, t. must enter into the constitutive relationship as
another independent variable as follows,

YTR = F(t,x“) . (2)

As a result. the total rate of change of the dependent variable, Y1p. becomes

dYre _ dYrr , g~ Y1 dX;

= )
d: at — 8X; dt '’ (3)

where N is the total number of time-dependent independent variables. In Eq. (3). if

ovra| . |9¥im dX;
at éx, dt |’
and
| 8Yr }_ﬁ’:aymﬁ
| at axX; dt |’

‘i)



then the problem becomes quasi-steady for both separate- and combined-effects tra:isients,
" respectively. Consequently. a steady-state constitutive relationship may be used to quantify
the transient-dependent parameter. YTg. such that

Y1r = Yos = F{Xi(t)} . (4)

Further discussion of Eqs. (2). (3). and (4) may be found in the studies of Nelson.45
Equation (3). which has merit because of its original discussion of the qnasi-steady versus
transient problems, provides a sound mathematical basis for diiferentiating them. However.
the practical use of this equation is difficult. The different terms on the right-hand side (RHS)
of Eq. (3) cznnot be queontified easily. Because the determination of whether a problem is
quasi-steady or not is based upon the relative magnitude of these terms, Eq. (3) does not
lead directly to a firm criterion.

Consequently. we_have tried to find a more practical equivalent to Eq. (3) that can be
quantified more easily. We acccmplished this by considering Eq. (3) relative to a simple generic
transient model. The physical model with a single independent variable (N = 1) consists of
a signal source that emits signals with a time-dependent property. a filter or amplifier that
processes this signal in a predescribed form, and a receiver that ieceives the altered signals
delayed by 7.. In this simple example. r. may be regarded as the time required for a signal
to travel from the source to the receiver. In a more general case, r., which represents the
time constant of the phenomena, is not necessarily constant. It may be a function of the
characteristic properties of the signal and/or the signal processor. This model may symbolize
a more concrete example for a transient heat-titansfer problem in which the signal emitted
may represent a time-dependent wall temperature. the processor may represent the convective
heat-transfer phenomena, and the received signal may represent the fluid temperature.

Based on this simple model, the signal received at time t is equal to the delayed signal
emitted at time t — . and processed through the filter. Thus, if we assume that Ygg is the
filter (we will determine the requirements for this assumption to be valid).

Yrr(t, X) = Yo [X(t — 1)} . (5)

If the Taylor series expansion for small r. is used, the RHS of Eq. (5) can be rewritten to
yield

_ dYes dX
Yrr(t, X) = Yss(X) — 1e 37—+ (6)
where higher order terms are neglected. If a parameter S is defined as
dYss /Ysg
=—23 [25 7
s dX b (")
then Eq. (6) may be written as
Yrr(t, X) = Y [X(0)] |1 - 29 (8)
TR, X) = Yo [X(0)] |2 - S5 -1 -



Equation (8) suggests that, for the quasi-steady approach to be valid. the following
condition must be satisfied,

dx Te 1 °
l?x < Is, ' ()
where S can be calculated easily by using the definition given by Eq. (7). after the steady-

state constitutive relationship, Ygs. is known. When the inequality in Eq. {9) is satisfied, the
problem is quasi-steady and

Yas(t, X) = Yss [X(2)] . (10)

Otherwise. the problem is @ true transient. In this case. Eq. (10) is no longer valid and a
transient constitutive reiationship is required.

It is important to note that Eq. (8) is merely an approximation for a transient constitutive
relationship obtained simply by translating the steady-state constitutive relationship along the
time axis by an amount 7. It is derived for the purpose of obtaining a criterion for the limitation
of the quasi-steady approach. In reality. 7. is not constant as treated so far in this paper.
It is a function of time and the magnitudes and time rates of changes of the dependent and
independent variables. Thus, each transient yields a unique constitutive relationship. However,
if 7. can be appropriately correlated as a function of these variables, then Eq. (8) may be used
as a generic form for transient constitutive relationships. Equation (8) is a practical alternative
to Eq. (3) because it can be used more easily by identifying and quantifying the time constants
of the different phenomena.

Another commonly used qualitative criterion for the quasi-steady approach is defined in
terms of the time-constants ratio. If the time constant of the transient is much greater than
the time constant of the representative phenomenon, then the problem is quasi-steady. Note
that, when applied to an exponential transient in the form

X = X, exp (:Ti) , (11)

1
0
where @ = 7/r.. This equation readily illustrates the concept of the time-constants ratio

mentioned earlier. but note that Eq. (9) is not restricted to exponential transients. For an
exponential decay. we can classify the transient problem as follows.

Eq. (9) reduces to

L)
4

<< S

, (12)

0 >> |S| (quasi-steady) .
0 << |S| (truly transient) . or
0~ |5| (transition) .
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Tentative map for transient problems.

Figure 1 shows a tentative map for the quasi-steady criterion. in this figure, the bound-
aries between the different transients are tentatively assigned. with the assumption that <<
or >> means an order of magnitude difference. Specifically, the difference between the transi-
tional and the truly transient problem is not very clear but, at some point within the trans:tion
region, the quasi-steady approach becomes invalid.

The dimensionless group on the left-hand side (LHS) of Eq. (9) was discussed by
Pasamchmetoglu® and Gunnerson’ in the context of transient critical heat flux (CHF). The
final transient CHF correlation explicitly includes the time-constants ratio in Eq. (12).% From
an overview of Kuznetsov.® it appears that a similar dimensionless group is being used in
the Soviet literature in conjunction with unsteady problems.®* However. to the best of our
knowledge. the English literature does not contain any information regarding the origin or the
quantitative application of this dimensionless group.

The current paper is concernied with the implications of Eqs. (9) and (12) on the numerical
solutions. The quasi-steady criterion is not discussed in detail here. However, it is discussed
from a numerical standpoint in the next section.

. MINIMUM TIME-STEP SIZE REQUIREMENT FOR THE QUASI-STEADY
SOLUTIONS
Many real-life transients. especially in reactor safety, are such that the transient parameter
rapidly increases or decreases in the early stages of the transient. then the rate of change slows.
For the purpose of this paper. we assume that the transient is decreasing monotonically and

* |n Soviet literature. the term unsteady problem is equivalent to what we refer to as a
truly transient problem.



may be approximated by an exponential decrease given by Eq. (11). During the numerical
solution of this type of transient, the quasi-steady solution criterion given by Eq. (9) yields

T. “xoe-(t-i'ht)/r - Xoe—t/r” 1
AtX et/ <<ls| ” (13)

where, within a time-step size At,

_JY[X(t+AY)]-Y [X(1)] X(t)
s={Rerat=xa - Hrm) (1)
Rearranging Eq. (13) and defining the variable
a= 2
we obtain
1 —:—a << i% (1)

If we assume that the system can absorb some error, E, without amplifying the error
and/or without becoming unstable. the << sign may be changed to < sign and Eq. (15)
becomes

1—e"° 0
p < E-g . (16)

Because a will always be a real, positive number for cases of interest, the quantity (1-e~%)/a
will have a maximum value of 1 at a = 0 and a minimum value approaching O as a approaches
oo so that

0< = <1,
a
The solution of Eq. (16) yields
Ef
ekl 7
azf(s) (17)

The solution domain for a as a function of E0/S is shown in Fig. 2. Remember that, if
EG6/S > 1, the problem becomes quasi-steady, as discussed in Sec. |l. As shown in Fig. 2. for
fast transients with small 8. for systems with small error margin E, and for a quasi-steady
constitutive relationship showing a strong dependence on the independent variable (S > 1).
the required time-step size must be considerably greater than the transient time constant. For
opposing trends. the ratio a decreases. This decrease. however. may be caused by a decrease
in the time-step size as well as by an increace in the transient time constant r, as the transiant
becomes slower. Thus, the map in Fig. 2 is not a good measure for the time-step size. A
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better way of mapping the time-step size may be against the phenomenological time constant,
7.. Manipulation of Eq. (17) yields

EAt E6 .(E8
—_—— > e | — .
s-r,,.—s’(s) (18)

Figure 3 shows the ratio EAt/St. versus Ef/S. As shown in .ais figure, for fast transients
(E6/S < 0.2). che dimensionless group EAt./St. becomes a constant and equal to 1. For
different error margins, the critical time-step size, At.. may be calculated as

Atc = % STC - (19)

Thus, if a time-step size larger than the critical time-step size is chosen, the numeri-
cal solution will proceed without allowing the dependent variable Y to change too rapidly.
However, for certain phenomena with large time constants, this critical time-step size may be
quite large. as shown in Fig. 3. We may not want to use the numerical scheme in such large
time steps because it may either introduce numerical errors and/or mask what is happening
within that large a time step. Often. such a large time-step size also may con .adict other
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considerations such as the material Courant limit. Next. we consider what happens if the
numerical solution is forced to use time-step sizes smaller than the critical time-step size.
The upper portion of Fig. 4 shows an exponential transient where the independent variable
X decreases with time according toc Eq. (11). The quasi-steady vanation of the dependent
variable Y with respect to X also is showvsn in the lower portion of tiie figure. For this example.
a linear relationship is used. If the time-step size is equal to the critical time-step size. X
is assumed to change from point 1 to point 4 along the dotted line 14, with a slope that
satisfies the quasi-steady criterion. Thus, at point 4, the error introduced by the quasi-steady
approach is limited to E.* However, if a time-step size smaller than At. is chosen, then at
intermediate points 2 and 3. the criterion for the quasi-steady approach is violated and an
error greater than E results. To avoid such errors in the prediction of ¥ that potentially
may lead to a numerical instability. we can use an artificial correlation Y (X) that follows
the dotted line 1-2'-3'-4. The point Y3 is calculated as Y (X3'). In the X — ¢t plane, X3,
which is located along the dotted line 1-4. corresponds to the quasi-steady equivalent of X,
at time t = t5. as shown in Fig. 4. Therefore, at time t;. the quasi-steady correlazion for
Y is evaluated based upon the value of X, instead of the value of X;. The value of Y5 is
calculated through an identical method. This procedure results in a slower change in Y’ within

® As the time-step size becomes larger, the difference equations deviate from the original
differential equations and produce larger numerical errors. However. such numerical errors are
not considered in this study. Within the context of this paper. the error E refers to the error
that occurs because of the quasi steady approach.
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Hlustration of the minimum time-step size and artificial quasi-steady method for
exponentially decreasing transients.

the critical time-step size until X reaches point 4; thus, the unrealistically rapic changes that
may occur early in the evaluation are avoided.

We refer to the procedure shown in Fig. 4 as the artificial quasi-steady approach. How
well this method approximates a truly transient constitutive relationship can be determined
only when transient constitutive relationships become available. Nevertheless. the values of Y
calculated through this approach are more realistic than those obtained fiom the plain quasi-
steady approach. Thus. this method does not introduce unrealist’c changes in Y chat may
produce errors with high orders of magnitudes and. sometimes, numerical instabilities.

So far our discussion has concentrated on the exponentially decreasing transients. Similar
arguments are valid for other types of transients that produce transient curves that become
level as time increases. However, other transients that do not show a tendency to become
level after a certain time may require a more complicated analysis. One such example would
be a linear increase of X with respect to time. as shown in Fig. 5. H the slope of the line that
represents X versus t is greater than the slope dictated by the quasi-steady criterion given by
Eq. (9). the problem Lecomes truly transient. In this case. the critical time-step size would
be co. which means that any finite time-step size violates the quasi-steady criterion. In *his
case, the same prccedure discussed earlier may be used to avoid rapid changes in Y. First.
from Eq. (9). the line with the maximum slope dX/dt that satisfies the quasi-steady criterion
may be found. This is the dotted line in Fig. 5. Thus. whereas the independent variat.le X
changes along the transient line 14, the dependent variable Y is calcula.ed using the quasi-
strady equivalents of X along the line 1-4’ as shown in Fig. 5. Again. thi- is an artificial

10
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lllustration of the artificial quasi-steady method for linear transients.

quasi-steady procedure and its absolute accuracy has not been determined. Nevertheless. we
claim that such an approach s an improvement over the plain quasi-steady approach and can
lead to a smooth solution

In this section. we have dealt with the time-step size requirements of the quasi-steady
approach. Even though violation of this requirement is expected to give erronecus results
such resu'ts may not necessarily produce a numerical instability We believe the numerical
instability is a product of a chain reaction in systems where a number of coupled differential
equations are involved A simple coupled. two-phase flow systein is discussed in Sec IV
The numerical instability that arises from the quasi-steady solution of this system also is
discussed

IV. NUMERICA! INSTABILITY CAUSED BY THE QUASI-STEADY APPROACH

To illustrate the numerical instability caused by the quasi-steady approach. we chose
a simple. two-phase flow model that consists of subcooled liquid a:- plets injected into a
saturated steam volume Figure 6 shows a schematic descriptioi of the physical configuration
This problem 1s explained more thoroughly in our earlier study 17 Our mathematical model
is based on the following simplifying assumptions.

2. The amount of noncondensables in t.ie steam 15 negligible
2. Droplet break-up and agglomeraiion are not modelec  We assums that all the injected
droplets are spherical witn the same radius

3. A pure conduction model for the droplets is used to estimate the condeisation
rates !! 12

11
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Schematic description of the interfacial condensation problem.

The effect!3 of the condensate-layer thermal resistance is neglected.

The liquid injection rate is constant. The injected liguid breaks into a homogeneous
distribution of droplets that move with a constant and equal velocity.

The increase in droplet radius czused by condensation!! is small and may be ne-
glected in computing the chamber void fraction.

The heat transfer between the two-phase flow and chamber walls is neglected.

The steam-side heat transfer and the sensible heat of steam are reglected when
compared with the latent heat.

The steam within the chamber is quasi-stationary and the inlet and exit flcw rates
are negligible.

The steam is modeled as an ideal gas.

The injection ratas ars restricted such that the resulting chainber void fraction is
greater than 0.90. Therefore. the pressurization caused by the liquid injection is
neglected.

12



For brevity, the derivation of the governing equations is not discussed here but is described
in our earlier paper.!? The chamber depressurization must be analyzed over two different time
domains. The first is the early injection period that lasts until the first injected droplets reach
the bottom of the chamber. This period is defined over the time interval 0 < t* < 7;. where r;
is the dimensionless droplet lifetime. During this period. the rate of change of the saturation
temperature may be calculated from

T, A [ (1-8,)%

reo ] (T.-“ + B)—S 4843

dt* ~ Ja 1-(1-8,)%
L /(al) dr" + = T°(t".23)| . (20)
II A at. ..=cst ‘ )

where the dimnensionless variables are defined in the nomenclature.
The second domain. the steady void-fraction period. is defined by t* > r;. During this
period. the satura.ion temperature changes according to

1

dT* A 1-8 31" 1 ‘

1111 _- ’ - -3 4243 - = af,n .

de* Ja (——B. )(Tut+B) [/ (—a‘, ).-=cst dz" + pr T (", 1) . (21)
0

L

In Eqs (20) and (21). T" is the droplet mixing cup temperature!* and is given by

2 /u®

T (t°.2") = Tie(t, 2" /u’) + ! / Ton 1, (r LA :') ', (22)
' $S ’ T;"(t. _ 5) dt’ $S 'ut '
0

where dT;, /dt’ is evaluated at t° + t' — r°/v"° and T¢¢ is the droplet temperature'* with

the steady saturation temperature given by

Y Y a li?
z r z
Te(t", —)=T,,(t" - —) |1 —ex L . 23
ss( u.) u(( u.)[ P ( u.)] (23)
Equation (22) represents the exact transient solution for the droplet temperature It forms
a coupled set with either Eq (20) or Eq (21) that must be solved simultaneously If the
saturation temperature changes slowly Eq (22) may be approximated by its quas: steady
equivalent'* given by

T (1", %) = T, (t7) [l - exp (n’ I)] - : (24]
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By substituting Eq. (24) into Eqgs. (20) and (21). we obtain:
foro<t* <r,.

iT: A 0-8)%
Sd_tl-u ~ " Ja [1 —u-p)G | Tt By &

‘.
x {tl. Ty (1 exp (-’f"°)]l/2 + %%’;’-‘/ [1—exp (—1r’t')]”:2 dz'} : (25)
0

and. for ¢* > 7,.

. dT.l = A (1 _B.) (T'.“ +B)_3 484°

dt* Ja\ B,
= '.
x l_d—Tuli_ Ty [1 — exp (—7%+; ]”2 + / [1 - exp (—1r’t')]”2 de' > . (26
T, dt* 1, ;

For 0 < t* < 0.5. the integrals'¢ on the RHS of Eqs. (25) and (26) may be approximated
by

'.
jf [1—exp (—1r"'t')]”2 dt’ = 0.85¢" [1 — exp (—w’t')]b T (27).
0

Thus. by substituting Eq. (27) into Eqs (25) and (26). we obtain:

foro<t® <r,.

(Tiw + B) 7 4

ﬂmA[ b8k
1_(1_50)5':'

dt Ja

x {0.85%“1:'l [l — exp (—w’l‘)](” + ‘—1: Tou [1 — exp (-—n’l')]”:} : (28)
and. for t* > 7.
dT; A(1-P -
| (ke o) . 3 4842
Tin - -2 (22 ) 1 By

- l .‘ -
x {0.85%‘:‘1 [1 - exp (-»?)]" T4 = T 1 — exp (—r’r;)]” } : (29)
¢
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Fig. 7.
Semi-explicit solution for different injection rates.

If the terms containing dT,,/dt* on the LHS are combined. a semi-explicit solution is
cbtained for Eqs. (28) and (29). Such solutions for four different injection rates are shown
in Fig. 7. This figure and all the other sample solutions repnrted in this paper correspond to
an initial steam pressure of 1 MPa. As shown in Fig. 7, the rate of change of the saturation
temperature for the cases shown may be approximated by an axponential decrease with a
period reported in the figure. The semi-explicit solution does not lead to a numerical instability
because the rate of chunge of the saturation temperature appears only on one side of the
governing equaztion.

Next. we consider the completely explicit solution by writing the forward-marching finite-
difference equations corresponding to Eqs. (28) and (29). If the * notation is eliminated. the:e
equations can be written as follows:

for0 <t <re
TJ"“ _ TJ' _ _i (1 - ﬁl);‘; _ (T, + B)—J.‘I‘J
S VERty 1-(1-B,)&| ™

x {0.35 gﬂ;—?&—l [1 - exp (-72)]% " + % T2, [1 - exp (—x’z)]"’} . (30)
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and. fori > r,.

Zﬂ%;&&___k ﬂﬁ')( .+B)'3“‘3
j _i-l .
x {0.85 Imftzu‘— [1-exp (-w’rt)]o'.’ + rlg T2 [1 - exp (—x270)] 1/’} . (31)

The results of this explicit difference scheme are shown in Figs. 8 and 9 for liquid injection
rates that correspond to 8, = 0.9 and f, = 0.95, respectively. The semi-explicit solution in
Fig. 7 shows that, for 8, = 0.9. the saturation temperature decreases exponentially with a
period 7* =~ 0.4. If we assume that the time constant of the phenomera is the droplet lifetime
r¢ that, in this case. is equal to 0.5, the time-constants ratio. 8. is 0.8. For this problem. S
is defined as

dT* T
S - ° ’
dTSll Tl.t

which yields 1 using Eq. (24). Thus, the problem is closer to the truly transient end of the
transition region as shown in Fig. 1. and there ir a minimum time-step size requirement, as
discussed in Sec. !ll. Stable solutions require a time-step size greater than r; that becomes
impractical for this problern. As shown in Fig. 8. time-step sizes smaller than r; lead to
unstable solutions. Similar arguments sre valiu for Fig. 9. which shows that increasing the
time-step size delays the instability. This instability is directly related to the speed of the
transient because, for slower transients (8, = C.99). no such instability was detected. even
with very sinall time-step sizes.

The cause of these instabilities observad in Figs. 8 and 9 miay be analyze | by considering
the terms within the braces in Eqs. (28) and (29). The physics of the problem requires
the dimensionless saturation temperature to decrease monotonically and to approach zero
asymptotically. Therefore, the term within the braces in Eq. (29) must be greater than zero.

Thus,
y . 1 )
0. 85|d:;. ’ [1 - exp (—1r’r¢')]0 T e — Toy [1 - exp (—w’r;)]os , (32)
which yields
dr;
o Tt
T a:' y—0.2
——1 < 118 [1 — exp (—n?rg)] (33)
Tul

Notice that Eq. (33) is analogous to the quasi steady criterion given by Eq. (9). For an
exponential decrease in the saturation temperature, Eq. (33) becomes

:L <1181 —exp (-n?r7)] 77 . (34)
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Fig. 9.
Explicit solution with different time-step sizes for §, = 0.95 and 1, = 0.4.
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Fig 1C.
Schematic illustration for the physical cause nf the numerical instability.

The numerical equivalent of Eq. (33) becomec
1-.( "--1 TJ' ) —0.3
ey — Thnd) - —x3y; '
= < 1.16 [1 — exp (—n?r;))] , (35)

(113

which can be solved for the critical time-step size to yield

(T =T ) 4_e\102
At > At, = 0.85 ———1!!17--11‘— [1-oxp (-x?r)] " . (36)
sat

Equation 35 is based on the chamber-averaged condensation rate. When the condition
given by Eq. (?%) is violated. the unnatural behavior of the individual droplets that rasults
is illustrated in Fig. 10 for some location within (he voiume. In this figure. As represents
the distance traveled by each dropiet during the time interval As. Thus, Az = uAt. The
change in saturation temperatur~ within a time-step size, At. is shown on the right abscissa.
Because of the quasi-steady assuniption. the liquid temperature profile within the chamber at
time ¢ adjusts itself instantaneously to the new saturation temperature at time t + At.

Evaporation of the droplets towards the botiom of the chamber is possible if the de-
pressurization is sufficiently high. However, the evapnration cannot exceed the condensation
within the total volume for the given time step. The evaporating dioplets must be confined
within some lower portion of the chamber #0 that rondensation exceeds evaporation for the
total volume. The opposite condition suggests & nat energy gain by the chamber, which
means that energy can be extracted from the cold liguid into warmer vapor. This obviously
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violates the second law of thermodynamics. Figure 9 shows a situation where the droplet at
position 1 has a lower temperature as it travels through Az to position 1’. Therefore. the
temperature of all the other droplets Jownstream from point 1 also decreases and a net evap-
oration within the chamber is produced: thus. the second law of thermiodynamics is violated
Equation 36 indicates the minimum time-step size that aliows a stable solution. This mini-
mum time-step size indicates a minimum distance traveled. Az.. Because Eq. (36) applies to
the chamber-averaged condensation rate. the correspending Az, may allow certain droplets
to evaporate while others yield condensation. However, the net effect will always be in favor
of condensation. When analyzed for individual droplets. an overly pratective stable solution
can be obtained if all the droplets are forced to yield condensation by the correct choice of
Az. For example. Az can be chose~ such *hat the droplst in position 1 is forced to go to
1” or farther. as shown in Fig. 10 The same restrictions apply to the other droplets shown
in Fig. 10. Such an rozch obviously requires Aifferent critical space increments. Az.. for

droplets at differer a3. The critical s,ace increment. which is suggested by Eq. (36)
and based on thr. ¢ -averaged condensation. provides a value between the minimum and
maximum values of . _ -omputed for different droplets. Thus, certain dropiets are allowed

to evaporate while the solution remains stable.

Now that the crit*rion for a stable solution has been developed. we can make the solution
artificially quasi-steady. as discussed in Sec. lIl. If the time-step size that results from Eq (36)
is impractically large or rxpected to produce high numerical errors. we can use the artificial
quasi-steady approach with smaller time-step sizes. For a given time-step size. the maximum
allowable value o, T}, — /" can be calculated from Eq. (35). This value may be used on
the RHS of Egs. (30) and (31) to obtain a :table solution. Such an approach is applied to
the problem when the injection rate corresponds to 8, = 0.9 and the dir.znsionless droplet
lifetime is equal to 0.5. For a time step-siz- equal to 0.025. the explicit solution of this problem
is unstable. a» shown in Fig. 8. By using the above method to make the problem artificially
quasi-steady. the solution Lecomas stable and the results are ver; close to the semi-explicit
solution. as shown in Fig. 11.

V. SUMMARY AND CONCLUSIONS

In this paper. the quasi-steady approach. commonly used in transient two-phase flow
problems. is investigated from tre use of basic principles In many cases. it is difficult to
estimate whether a given probler~ (i truly transient or quasi-steady. A simple crites1on to
detect the truly transient problems is given in Sec 1l Based on this criterion. the minimum
time-step size required during numerical soluticns 1s determined in Sec 11l Some truly transicnt
problemns may be made zrtificia'ly quasi-steady 2nd. thus. a viable numerical solution without
unnaturally f.st change: in the dependent variab e is determined This concept of artificially
quasi-steady analysis aiso is discussed in Sec. lll. Finally. in Sec. IV. a simple interfacial
heat-transfer pioblem that illustrates these concepts is discussed. The problem consists
of cold liquid droplets injected into a steam chamber The governing equations are solved
numerically for the rate-of-depressurization within the chamber. The stable semi-exphcit
solution is compared with the explicit solution that. for high injection rates and smail time-
gtep size.. becomes unstable The origin and results of this instabil:ty are discussed in detail
The results obtained by artificially stabilizing the problem also are reported in Sec IV ar 1 are
in good agreement with the semi-explicit solution
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Fig. 11.
Artificially quasi-steady explicit solution for §, = 0.90 and 7; = 0.5.

The best solution to a transient two-phase problem can be achieved by using transient
constitutive relationships. However, such relationships do not exist for most possible tran-
sients and the ones that do exist are almost impossible to incorporate into the quasi-steady
logic of existing computer codes. From this perspective. we believe that the concepts presented
within this paper may be useful for future two-phase flow code development and assessment
efforts. We recognize that, at this point, the incorporation of these concepts into integral
codes is not trivial and further investigation of this subject is needed.
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